Magnetoelectric effect in nanogranular FeCo-MgF films at GHz frequencies
نویسندگان
چکیده
The magnetoelectric effect is a key issue for material science and is particularly significant in the high frequency band, where it is indispensable in industrial applications. Here, we present for the first time, a study of the high frequency tunneling magneto-dielectric (TMD) effect in nanogranular FeCo-MgF films, consisting of nanometer-sized magnetic FeCo granules dispersed in an MgF insulator matrix. Dielectric relaxation and the TMD effect are confirmed at frequencies over 10 MHz. The frequency dependence of dielectric relaxation is described by the Debye-Fröhlich model, taking relaxation time dispersion into account, which reflects variations in the nature of the microstructure, such as granule size, and the inter-spacing between the granules that affect the dielectric response. The TMD effect reaches a maximum at a frequency that is equivalent to the inverse of the relaxation time. The frequency where the peak TMD effect is observed varies between 12 MHz and 220 MHz, depending on the concentration of magnetic metal in the nanogranular films. The inter-spacing of the films decreases with increasing magnetic metal concentration, in accordance with the relaxation time. These results indicate that dielectric relaxation is controlled by changing the nanostructure, using the deposition conditions. A prospective application of these nanogranular films is in tunable impedance devices for next-generation mobile communication systems, at frequencies over 1 GHz, where capacitance is controlled using the applied magnetic field.
منابع مشابه
Giant dielectric and magnetoelectric responses in insulating nanogranular films at room temperature
The electric and magnetic properties of matter are of great interest for materials science and their use in electronic applications. Large dielectric and magnetoelectric responses of materials at room temperature are a great advantage for electromagnetic device applications. Here we present a study of FeCo-MgF nanogranular films exhibiting giant dielectric and magnetoelectric responses at room ...
متن کاملEffect of multilayer structure on high-frequency properties of FeCo/(FeCo)0.63(SiO2)0.37 nanogranular films on flexible substrates
The high-frequency properties of the FeCo-SiO2 monolayer nanogranular films and FeCo/(FeCo)0.63(SiO2)0.37 multilayer nanogranular films which were elaborated on flexible substrates by magnetron sputtering system were studied. Compared to the monolayer films with the same FeCo content, the multilayer structures comprised of FeCo/(FeCo)0.63(SiO2)0.37 exhibit more excellent properties that the rea...
متن کاملThe high frequency magnetic properties of self assembled Fe–Co–Si–N nanogranular thin films
The effect of a variation in Si and N concentration on the microstructure, crystal structure and high-frequency magnetic properties of Fe–Co–Si–N nanogranular thin films was investigated. The films, prepared by rf magnetron sputtering, consisted of nanosized grains of FeCo as well as a Si and N rich intergranular amorphous phase. The Si concentration had a significant effect on the crystal stru...
متن کاملOptically Transparent Ferromagnetic Nanogranular Films with Tunable Transmittance
Developing optically transparent magnets at room temperature is an important challenge. They would bring many innovations to various industries, not only for electronic and magnetic devices but also for optical applications. Here we introduce FeCo-(Al-fluoride) nanogranular films exhibiting ferromagnetic properties with high optical transparency in the visible light region. These films have a n...
متن کاملNanogranular metallic Fe–oxygen deficient TiO2−δ composite films: a room temperature, highly carrier polarized magnetic semiconductor
Nanogranular metallic iron (Fe) and titanium dioxide (TiO2−δ) were sequentially deposited on (100) lanthanum aluminate (LaAlO3) substrates in a low oxygen chamber pressure using a pulsed laser ablation deposition (PLD) technique. By sequential deposition, ≈10 nm diameter metallic Fe spherical grains were suspended within a TiO2−δ matrix. The films show ferromagnetic behavior with a saturation m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 446 شماره
صفحات -
تاریخ انتشار 2018